[모두의 딥러닝] 20. 이미지 인식, 데이터 전처리 - MNIST 데이터
MNIST 데이터 - 미국 국립표준기술원(NIST)이 고등학생과 인구조사국 직원 등이 쓴 손글씨를 이용해 만든 데이터 - 7만 개의 글자 이미지에 각각 0부터 9까지 이름표를 붙인 데이터셋 - keras API를 이용해 불러올 수 있음 이미지 인식 1. 데이터 준비 - X : 불러온 이미지 데이터 / y : 이미지에 0~9를 붙인 이름표 - X_train, y_train : 학습셋 / X_test, y_test : 테스트셋 from tensorflow.keras.datasets import mnist # MNIST 데이터셋을 불러와 학습셋과 테스트셋으로 저장 (X_train, y_train), (X_test, y_test) = mnist.load_data() # 학습셋과 테스트셋이 각각 몇 개의 이미지로..