[모두의 딥러닝] 21. 컨볼루션 신경망(CNN), 풀링(Pooling), 드롭아웃(drop out), 플래튼(flatten) - MNIST 데이터
컨볼루션 신경망(CNN) - 입력된 이미지에서 다시 한 번 특징을 추출하기 위해 커널(슬라이딩 윈도)을 도입하는 기법 - 원래 있던 값 x 가중치 값 = 새로 추출된 값 ex. (1x1)+(0x0)+(0x0)+(1x1) = 2 - 커널을 한 칸씩 옮겨 모든 칸에 적용 - 새롭게 만들어진 층을 컨볼루션(합성곱)층이라고 함 - 입력 데이터가 가진 특징을 대략적으로 추출해서 학습 진행 Con2D() : 컨볼루션(합성곱) 층을 추가하는 함수 : keras에 존재 - 첫 번째 인자 : 커널을 몇 개 적용할지 결정 - kernel_size : 커널의 크기를 (행, 열) 형식으로 결정 - input_shape : 맨 커음 층에 입력되는 값을 (행, 열, 색상 또는 흑백) 형식으로 결정 - activation : 활성..